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Abstract 

Crystalline semiconductors under specific conditions, with an applied electric field, switch or oscillate between two conductive 

states, thus producing low frequency oscillations of electric current flowing through the sample and as a result of Joule heating 

oscillations of sample temperature. These phenomena are recognized to be thermo - electrical instabilities. Although current 

oscillations can be detected and registered experimentally, there is no device that can detect, register and allow us to study the 

sample temperature change in time. The purpose of this study is to learn about the relationship of electric current and sample 

temperature coupled with deep traps that play an important part in supporting the phenomenon. This can be done only by 

setting up a mathematical model that describes the phenomenon in detail. The equations that make up the model are continuity 

equations for free electron and deep traps carrier populations, as well as a heat conduction equation – a set of ordinary 

nonlinear inhomogeneous differential equations. The system is transformed into a so called “canonical form” as a result of 

linearization of the system at isolated equilibrium. It is achieved by expansion of the right hand sides of the equations into two 

variable Taylor series at isolated equilibrium involving linear non-singular transformation. The mathematical model for 

thermo-electrical instabilities in an n-type semiconductor with non-degenerate electron statistics has been studied as 3D 

dynamical system. The system of differential equations is broken down into component planar systems, each of them being tested 

for existence of limit cycles on a determined phase plane, followed by quantitative investigation of their local behavior at isolated 

equilibrium and at points on individual trajectories on phase plane dependant on single parameter T0. Solutions of sets of initial 

value problems as time series of the variables: free electron concentration; sample temperature; deep trap population is presented. 

The investigation results show that oscillations of sample temperature follow those of current. Change in T0 forces the system to 

adjust to new thermodynamical state by changing frequency and amplitude of the oscillations as well as dynamics of deep trap 

population. 
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1. Introduction 

Thermo electrical instabilities in semiconductors immersed 

in cryogenic media (low frequency oscillations of current and 

temperature of a sample as a result of Joule heating) have been 

a point of interest for researchers for many years and have 

been studied experimentally in a variety of semiconducting 

materials [1-3]. In [1] mathematical model based on 3 types of 
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trap levels that account for both electron and hole capture for a 

thin cylindrical sample of crystalline AIIBVI compound with 

uniform distribution of temperature, electric field and elec-

tron-hole pair generation across the sample. System com-

prised of 5 differential equations taking into consideration 

kinetics of generation-recombination processes is investigated 

at steady state, taking all time dependences of the variables 

equal to 0 for simplified cases. Authors calculated threshold 

values for electric field and frequency of current and temper-

ature oscillations comparing them with available experi-

mental data. 

Detailed, comprehensive and thorough research of the in-

stabilities in chalcogenide and vanadium dioxide thin films 

have been conducted in [2], where thermo electrical instabil-

ities are characterized in terms of negative differential con-

ductivity observed in voltage current characteristics of solids. 

Heat flow in a semiconductor is compared with RC (resis-

tor-capacitor) network, and effects of circuit design, presence 

of in homogeneities like metallic inclusions are analyzed. 

Steady state heat conduction equation together with coupled 

electrical and thermal processes in a sample are solved on grid 

in the finite difference approximation. [3] presents research of 

another model with differential equations for free electron 

concentration n, trap population nt and sample temperature T 

for A2B6 compounds. Equations for n and T were solved nu-

merically by means of Gear’s method for stiff systems of 

ordinary differential equations. Time sequences of T(t) and 

phase trajectories on phase plane (n, T) were obtained as a 

result, for ambient temperature of T0=283 K and different 

values of applied electric field. 

Since it is impossible experimentally to detect oscillations 

of sample temperature, research of mathematical equations 

that describe the phenomenon is necessary. So far both sim-

plified and more complex model investigations have been 

limited to study of either null-isoclines of systems of differ-

ential equations [1] or as in [3] only a partial investigation of 

suggested model. Construction of a simplified new model for 

more detailed study of the system of nonlinear ordinary dif-

ferential equations in order to attempt to answer the questions 

how change of current and temperature are related to each 

other, and how deep traps involvement into instability pro-

gresses is presented in the paper. The quantitative analysis of 

periodic solutions can give insight into current-temperature 

relationship as well as behavior of deep traps in such a system. 

2. Model Details 

To set up a system of equations that describe the dynamics 

of electrons at conduction zone Ec n and on deep traps nt, 

which play an important part in thermo-electrical instabilities 

in semiconductors, the generation-recombination model by 

Schoell [4] was employed. The author [4] considered the two 

trap level model for analysis of instabilities of the current 

density and electric field that were classified in his book as 

first order phase transitions. Choice of the model is preferred 

because the right hand side expressions are polynomials with 

respect to position independent variables n and nt that gives a 

clear understanding of the mechanism which drives the in-

stability. Equations for the electron concentration at Ec and on 

deep traps, taking into account thermal emission rates, are 

considered for an n-type homogenous semiconductor with 

non-degenerate electron statistics. Along with the equation for 

change in sample temperature, well known as heat conduction 

equation, it completes the dynamical system (1): 

𝑑𝒏

𝑑𝑡
= 𝑛2(−𝑇1

𝑆 − 𝑋1
∗) + (𝑁𝐷 − 𝑛 − 𝑛𝑡)𝑋𝑡ℎ −

−𝑛(𝑛𝑡(𝑋1 − 𝑋1
∗) + 𝑇1

𝑆(𝑁𝑡 −𝑁𝐷) − 𝑁𝐷𝑋1
∗);

𝑑𝒏𝒕

𝑑𝑡
= −(𝑋𝑜𝑝 + 𝑋𝑡ℎ𝑛𝑡 + 𝑇

∗(𝑁𝐷 − 𝑛 − 𝑛𝑡) − 𝑋1);

𝑑𝑻

𝑑𝑡
= (

𝑘

𝑐𝜌

𝑑2𝑇

𝑑𝑥2
−
𝑇−𝑇0

𝑡𝑐
+
𝑛𝑒𝜇𝐸2

𝑐𝜌
) .

  (1) 

The variables and constants in the system are: n=n/ND, 

nt=nt/ND, T=T/T0, tc, T0– free electron concentration, electron 

concentration on traps, sample temperature, thermal relaxa-

tion time of a sample and temperature of the cooling media; 

Nd, E, c,  , k,   – are effective donor concentration, applied 

electric field (constant), heat capacity of a sample, its density 

and heat conduction, and electron mobility. Temperature 

dependence of the physical parameters like heat capacity, heat 

conduction, thermal relaxation time, electron mobility, elec-

tron concentration in a temperature interval of T0=(77-197) K 

is taken into consideration based on accessible data, both 

experimental as well as theoretical research from [5-11]. 

Physical constants taken for spatially homogeneous n-Si 

sample of size (0.8 x 0.5 x 0.5) cm with partially compensated 

donors NA < ND, where acceptors are assumed to be the 

ground state (E1 =0.302 eV), and shallow donors to be the first 

excited state (E2=0.011 eV) of the deep traps [4, 9, 12]. Figure 

1 represents the two level model in detail. 
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Figure 1. Two level generation-recombination model for first order phase transitions in semiconductors by Schoell [4]. 

As a result of combination of the thermal 𝑋𝑡ℎ, optical 𝑋𝑜𝑝 

excitements and impact ionization 𝑋1 of the ground state E1 

in the presence of an applied constant electric field, electrons 

are transferred onto the first excited state E2. From E2 elec-

trons are emitted onto the conductive zone with the rates 𝑋1
𝑆 

for thermal and 𝑋1
∗ for field aided emission, or back to the 

ground state E1. Temperature independent optical excitement 

𝑋𝑜𝑝 populates the ground states with a new supply of elec-

trons to continuously support oscillations of current and 

temperature. 𝑇1
𝑆 , 𝑇∗ - recombination at the excited and 

ground states; two electron Auger recombination at the 

ground state 𝑇1 is combined with 𝑇∗ in the equations. Direct 

transitions between conduction Ec and valence band Ev are 

ignored [4]. 

Expressions for the generation rates 𝑋1
𝑆, 𝑋𝑡ℎ, 𝑋1

∗ and 𝑋1 

are given by: 

𝑋1
𝑆 = 𝑋1

𝑆0exp (−
𝐸2

𝑇
); 𝑋1

∗ = 𝑋1
∗0exp (−

𝐸2

𝑒𝜆𝐸
) 

𝑋𝑡ℎ = e0exp (−
𝐸1

𝑇
); 𝑋1 = 𝑋1

0exp (−
𝐸1

𝑒𝜆𝐸
) 

Where 𝑋1
𝑆0; e0; 𝑋1

∗0; 𝑋1
0; 𝑇1

𝑆; 𝑇∗– are constants [4];   - 

electron mean free path; E – applied constant electric field; e - 

electron charge. Optical excitement rate 𝑋𝑜𝑝 calculated from 

[7]. 

Equation for electron dynamics n in the conduction zone Ec 

accounts for field impact ionization and recombination, as 

well as thermal generation of electrons from E2, field impact 

ionization and recombination at E1 and E2. Dynamics of the 

deep trap population nt accounts for optical, thermal, field 

impact ionization of electrons from E1; recombination through 

E2. 

The dynamics of sample temperature T in time depends on 

applied constant electric field, heat dissipation through cool-

ing of the sample at T0, and change in the concentration of free 

electrons in Ec and their mobility. Variation of T over the 

length x of the sample was set as boundary value problem 

with boundary conditions of type 3 [12]. Obtained solutions 

T(x) for different values of T0 are substituted into the equation 

for followed investigation of nonlinear autonomous system 

(1). 

3. Methods 

System (1) was studied as a set of three planar systems: (n, 

T), (n, nt), (nt, T). Each of the planar systems was tested for the 

presence of a limit cycle based on Bendixon’s criteria at fixed 

values of generation rates 𝑋1
𝑆, 𝑋𝑡ℎ, 𝑋1

∗ and 𝑋1; optical ex-

citement 𝑋𝑜𝑝, as well as parameter T0 for determined range of 

values of appropriate variables, which form a “square” on the 

phase plane, before being cast into so called “canonical form” 

by means of linear nonsingular transformation [13]. The right 

hand side nonlinear expressions of the system (1) for an ap-

propriate planar system are expanded into two variable Taylor 

series at an isolated equilibrium. The first order derivatives of 

the expansions were used to form a Jacobian matrix; firstly for 

determining that the equilibrium is isolated, as well as for 

obtaining quadratic characteristic equations with respect to 

characteristic number  . For the case when   is a complex 

conjugate (for periodical trajectories on the phase plane), 

transformation (3) was employed to express a planar system 

in form (2) when equilibrium is at origin. The transformation 

(3) provides real functions of real variables to produce values 

of real and not complex domain. Linear parts of the system (2) 

are then set as a Cauchy problem with sets of initial condi-

tions: 

{

du

dt
= αu − βv + φ(u, v)

dy

dt
= βu + αv + ψ(u, v)

              (2) 

t = 0; u = u0; v = v0 

𝑢 = (𝛼 − 𝑎)𝑥 + 𝑐𝑦; 𝑣 = 𝛽𝑥;            (3) 

𝑢0 = (𝛼 − 𝑎)𝑥0 − 𝑦0; 𝑣0 = 𝛽𝑥0. 

Here x, y – variables and 𝑥0, 𝑦0 - initial values of an ap-

propriate planar system accordingly; 𝑎, 𝑐 – elements of Ja-

cobian at an isolated equilibrium;  1,2 = 𝛼  𝛽  - roots of 

characteristic equation;  (𝑢, 𝑣) ,  (𝑢, 𝑣) – nonlinear parts 
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(second and higher order terms) of two variable Taylor series 

expansions. The initial value problem (2) was solved with 

variation of constants method for inhomogeneous linear sys-

tems. Real parts of the solutions were separated and plotted 

against time. 

4. Results 

Figure 2 presents time sequences of obtained real parts of 

the solutions of (2) for the planar systems dependant on the 

single parameter T0. Variations of n, nt and T in time are 

overlaid in the graphs. At T0 = 77 K, amplitudes of n and nt are 

large, while that of T is small, relative to n and nt. As T0 grows 

the amplitude of all variables T, n and nt decrease. With 

growing T0, the amplitude of T become larger relative to those 

of n and nt. At higher T0, the amplitude of nt is limited to 

smaller deviations in time. A decrease in the frequency of nt 

with a growing T0 is also observed. 

  

                           (a)                                                      (b) 

 

(c) 

Figure 2. Time sequences for n-brown; nt–orange; T-pink at different values of temperature of cooling media T0: (a) – 77 K; (b) – 137 K; (c) – 

197 K. 

5. Discussion 

At a low value of T0, small amplitude of T shows rapid 

cooling of the sample Figure 2a; large amplitudes of nt and n 

indicate lower carrier population at conduction band Ec, so the 

transfer of electrons onto Ec from traps is happening in larger 

volumes. With growing T0 Figure 2b, c, electron transfer from 

traps is no longer possible at the same volume, because of the 

constant recombination rates and limited number of allowed 

states per unit volume at Ec. The lowering of the frequency of 

nt also points to that. As a result, an adjustment through an 

increase of frequency is taking place for both n and T, since 

the sample’s cooling is taking a longer time; oscillations of T 
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fall behind the changes of current in time. 

Comparing the findings of the research with those of [3] 

would be appropriate here. Study of the system in [3] included 

as part of the research, time sequences of T(t) in transition 

from regular to chaotic oscillations, as well as accompanying 

phase trajectories of planar system (n, T). No further inves-

tigation of interrelationships of the variables n, nt, T were 

conducted and yet time sequences of n, nt can give infor-

mation about the involvement of deep traps, interrelationship 

with other variables of the system through their own behavior 

in time. In Figure 2 time sequences of each of the variables 

were overlaid to show not only how these variables change in 

time, but also how their frequencies, amplitudes, and phase 

differences relate and evolve with respect to each other and a 

growing T0. 

The next step in the research of the dynamical system (1) is 

conducting analysis of the phase trajectories of the planar 

systems depending on the parameter T0 which will give a 

clearer view of the interrelationship of the variables n, nt and 

T. 

6. Conclusions 

The fact that alternating current passing through solids 

creates heat due to Joule heating has been known for a long 

time and has found far reaching applications in the modern 

world. Yet the relationship between current and temperature 

remained unknown, since it is impossible to detect variations 

of temperature in time, experimentally. Theoretical research 

of this relationship in solids, based on information accessible 

to the author, has never been conducted in full. Findings of 

this research give interesting insight into the delicately bal-

anced system where change in one variable causes strong 

effects on the others, depending on parameter T0. Change in 

the temperature of the cooling media forces the system to 

adjust to a new thermo dynamical state by changing the fre-

quency and amplitude of oscillations, thus giving an idea of 

the level of density states occupation at the conduction zone; 

oscillations of sample temperature always follow those of 

current, and this delay is present throughout the interval of 

change of T0. 
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