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Abstract 

A semiconducting sample placed in cryogenic media with applied electric field generates low frequency oscillations of electric 

current and sample temperature and known to be thermo-electrical instabilities. Although observation of current oscillations on 

oscilloscope is possible, change of sample temperature cannot be detected experimentally. Description of the phenomenon 

through mathematical equations helps to understand relationship of the two variables as well as their connection to deep trap 

behavior that are involved in supporting the instability. Mathematical model for thermo-electrical instabilities in an n type 

semiconductor based on the two deep trap level model with non-degenerate electron statistics has been introduced in order to 

investigate the unique relationship between the change in time of both electric current flowing through a semiconductor sample 

and the sample temperature. The 3D dynamical system of nonlinear inhomogeneous ordinary differential equations has been 

investigated as component 2D dynamical systems (n,T), (n,nt) and (nt,T) for local behavior at isolated equilibrium and at points 

on individual trajectories, where n, nt and T are free electron concentration at conduction band, electron concentration at deep 

traps and temperature of a semiconductor sample accordingly. Each of the planar systems is expressed in canonical form and 

investigated as a Cauchy problem with a set of appropriate initial values. This paper presents investigation results of phase 

trajectories of the planar systems depending on a single parameter – the temperature of cooling media T0.  Based on obtained 

calculation results of time sequences of the three variables n, nt and T, phase differences among these variables have been 

determined for different values of T0. It has been established that the change in sample temperature lags behind change in current 

and this lag increases with T0. Clearly defined correlations among systems (n,T), (n,nt) and (nt,T) are seen, being the result of 

balance between field aided and thermal ionization mechanisms for charge carrier generation and recombination processes. 

Thermal and field assisted generation mechanisms compete with one another in achieving steady non equilibrium state in the 

system depending on temperature of cooling media T0. 
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1. Introduction 

Flow of electric current through a semiconductor placed in 

cryogenic media at specific conditions oscillates as a result of 

Joule heating with low frequencies which causes the temper-

ature of the semiconductor sample to oscillate. Studying the 

relationship of the electric current and temperature variations 

in time gives an opportunity not only to see how the rela-
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tionship is built, but also how the carrier population of the 

traps lying deep in the band gap are involved in their own 

relationship with the variation of sample temperature, and 

how different generation mechanisms driving the instability 

coexist in supporting the instability at different temperatures 

of cooling media T0. Since it is impossible to register the 

variations of sample temperature in time experimentally, it is 

necessary to involve mathematical equations to understand 

the relationships. The system of ordinary differential equa-

tions - the continuity equations, forming the dynamical sys-

tem describing the process need to take into account genera-

tion-recombination processes of charge carriers, based on the, 

chosen in this case, two trap instability model [1], as well as 

the equation for distribution of heat along the sample which is 

well known as the heat conduction equation. Simplifications 

are unavoidable in such an idealized model system: free 

electron concentration n and deep trap population nt are in-

dependent of position in the sample, applied electric field 

value does not change energy spectrum of electrons, a sample 

is heated uniformly. At the same time temperature depend-

ence of the parameters in the equations like electron mobility, 

heat capacity, heat conduction, heat transfer coefficient, 

thermal relaxation time for a sample, band gap width [2-13] as 

well as mean thermal and drift velocities of electrons, electron 

lifetime and mean free path between electron collisions in the 

studied T0 = (77-197) K. temperature interval for 

non-degenerate electron statistics must be taken into account. 

Study of the system (1) was conducted in [14] where time 

series of variables n, nt and T have been presented and dis-

cussed. Current investigation being an integral part of the 

conducted study presents results of analysis of obtained phase 

trajectories of planar systems (n, T), (n, nt) and (nt, T) at 

T0=(77-197) K. 

2. Model Details 

The mathematical model for thermo-electrical instabilities 

in a semiconductor based on two level genera-

tion-recombination model by Schoell [1], was introduced in 

[14] as a 3D (system of three ordinary differential equations) 

nonlinear dynamical system of nonlinear inhomogeneous 

ordinary differential equations (1). The system of equations 

contains two continuity equations for free electrons at con-

duction band, electron population at deep traps and well 

known heat conduction equation. 

𝑑𝑛

𝑑𝑡
= 𝑛2(−𝑇1

𝑆 − 𝑋1
∗) + (𝑁𝐷 − 𝑛 − 𝑛𝑡)𝑋𝑡ℎ −

−𝑛(𝑛𝑡(𝑋1 − 𝑋1
∗) + 𝑇1

𝑆(𝑁𝑡 − 𝑁𝐷) − 𝑁𝐷𝑋1
∗);

𝑑𝑛𝑡

𝑑𝑡
= −(𝑋𝑜𝑝 + 𝑋𝑡ℎ𝑛𝑡 + 𝑇∗(𝑁𝐷 − 𝑛 − 𝑛𝑡) − 𝑋1);

𝑑𝑇

𝑑𝑡
= (

𝑘

𝑐𝜌

𝑑2𝑇

𝑑𝑥2
−

𝑇−𝑇0

𝑡𝑐
+

𝑛𝑒𝜇𝐸2

𝑐𝜌
) .

   (1) 

The variables and constants in the system are: n=n/ND, 

nt=nt/ND, T=T/T0, tc, T0– free electron concentration, electron 

concentration on traps, sample temperature, thermal relaxa-

tion time of a sample and temperature of the cooling media; 

Nd, E, c,  , k,   – are effective donor concentration, applied 

electric field (constant), heat capacity of a sample, its density 

and heat conduction, electron mobility. Heat conduction 

equation in (1) was set as boundary value problem and ex-

pression for distribution of temperature across a sample of 

size (0.8 x 0.5 x 0.5) cm obtained presented in [15]. The planar 

systems were set as Cauchy problems with appropriate initial 

values and real parts of solutions of the initial value problems 

as time sequences of the variables n, nt, and T have been 

presented in [14]. The Results part of this paper, presents 

phase trajectories of the pointed systems on phase plane for 

T0= (77-197) K. 

3. Methods 

The methods of investigation of the system (1) have been 

described in detail in [14]. The 3D dynamical system with 

nonlinear inhomogeneous ordinary differential equations was 

broken down into planar systems, transformed into “canonical 

form” by means of non-singular linear transformation [16] 

and investigated at points on isolated equilibrium and on 

individual trajectories. Equations of the planar systems were 

solved with variation of constants method for each of the 

value of T0 and real parts of solutions separated and plotted 

against time to form time sequence of the variables n, nt, T. 

4. Results 

Obtained phase trajectories of the planar systems (n, T), (n, 

nt) and (nt, T) are displayed in Figure 1. The variables plotted 

on the phase portraits are the real parts of solutions of Cauchy 

problems in [14] for appropriate planar systems. All foci are 

stable except the one for the system (nt,T) at T0=77 K. 

Change in free electron concentration (or current) is fol-

lowed by change in sample temperature with certain delay, 

which is reflected in phase difference ϕ between them. With 

increasing temperatures of the cooling media T0, ϕ grows for 

system (n, T), as seen in Table 1. There is a distinct correlation 

between temperature lagging behind n and nt, for systems (n, 

T) and (nt,T) in the temperature range. While ϕ at T0=77 K 

shows a small temperature lag for n, it proves larger for nt. The 

opposite is seen at T0=197 K. For system (n, nt) values for ϕ 

are large at endpoints of the temperature range and small at 

137 K. 
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(a) 

 
(b) 

 
(c) 

Figure 1. Phase portraits of systems (n,T); (n,nt); (nt,T), (a) column - 𝑇0 = 77 𝐾; (b) column - 𝑇0 = 137 𝐾; (c) column -  𝑇0 = 197 𝐾. Pa-

rameters: 𝑋1
0 = 0.01; 𝑋1

𝑆0 = 0.6;  𝑇1
𝑆 = 3; 𝑋1

∗ = 0.08;  𝐸 = 375
𝑉

𝑐𝑚
. For system (n, T): 𝑋1

0 = 0.05 𝑎𝑡 𝑇0 = 197 𝐾. 

Table 1. Values of phase difference ϕ in radians for the pointed 

systems. 

T0=77 K T0=137 K T0=197 K  

0.754 1.363 2.26 (n, T) 

2.19 0.272 1.64 (n, nt) 

1.13 3.32 0.503 (nt, T) 

5. Discussion 

The results displayed in Table 1 show clear regularity with 

which phase difference ϕ changes from one value of T0 to 

another for each planar system. As it is seen for system (n, T) 

at lower temperatures of coolant T0 ϕ is smaller because the 

sample cools fast. As T0 grows so does ϕ, meaning the sam-

ple’s cooling is taking a longer time, since the sample is 

heating up. At T0=77 K for system (nt, T) field assisted 

transfer of electrons from deep traps nt to the conduction band, 

rather than the thermal one, is the dominant mechanism. The 

sample’s loss of heat is too fast to be able to ionize deep traps, 

hence a large temperature lag is seen for nt, which is also 

responsible for nt lagging behind n. At T0=197 K for system (n, 

T) a large temperature lag for n is coupled with a small one for 

nt in system (nt, T), which means that field aided ionization is 

no longer the dominant mechanism for carrier generation, but 

rather thermal ionization. Quick succession of change in nt 
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and T results in a small temperature lag for nt - an indicator of 

thermal ionization of the traps. Since the limited rate of 

spontaneous recombination is overwhelmed by thermal gen-

eration, and conduction band is not able to accommodate 

more carriers (because of limited density of states at Ec) being 

constantly supplied from the traps, a substantial lag of nt be-

hind n is observed at T0=197 K. At T0=137 K, the system goes 

through a state, in which both the field and thermally assisted 

ionization of nt become equal contributors in creating excess 

charge carriers. The high rates of generation and recombina-

tion cause not only a heavy temperature lag behind both n and 

nt, but also an almost instantaneous upward transfer of carriers 

and a downward spontaneous recombination of those, and a 

very small value of ϕ for (n, nt). 

6. Conclusions 

Clearly defined correlations among the planar systems (n, 

T), (n, nt) and (nt, T) show that thermo dynamical equilibrium 

for each value of the parameter T0 is achieved through careful 

balance of thermal and field assisted generation mechanisms. 

At lower values of cooling media T0 electric field assisted 

generation of carriers dominates over thermal generation of 

the same. It is observed in small value of ϕ=0.754 for system 

(n, T), which means heat dissipation through sample sides is 

very effective, and that points to the fact that deep trap pop-

ulation will have to be ionized by means of the most efficient 

way for T0=77 K, that being field impact ionization. At 

T0=137 K these generation mechanisms balance one another, 

being equal contributors in carrier generation and transfer of 

charge carriers between traps and conduction band. That is 

seen in values of ϕ in Table 1 for each of the planar systems: a) 

each of the charge carrier generation mechanisms working 

together effectively in transferring electrons from traps to the 

conduction band and so supporting the fast recombination of 

electrons back at the traps showing a very small value of 

ϕ=0.272 for system (n, nt); b) relatively large value of 

ϕ=1.363 for system (n, T) and ϕ=3.32 for (nt, T) show that 

change in sample temperature T is heavily “dragging” behind 

the variations of n and nt, thus showing the inability of T to 

keep up with fast transfer of carriers up and down the con-

duction band and traps due to noticeable difficulty of heat 

dissipation of sample setting at T0=137 K. 

At high value of T0=197 K of the coolant, in contrary to the 

situation with low value of T0=77 K, thermal ionization dom-

inates over field assisted generation, where the system is trying 

to reach a new steady non equilibrium state. It is seen clearly in 

heavy lags (ϕ=2.26) of sample temperature T behind free elec-

tron concentration n in Table 1. The value of ϕ=1.64 in system 

(n, nt) for T0 =197 K, as was mentioned above, indicates that 

fresh supply of electrons from traps being restricted by limited 

density of states at Ec. For system (nt, T) with ϕ=0.503 it is a 

relatively small lag at T0 =197 K, since the sample has been 

heated up well and thermal ionization of the deep traps is ef-

fective; at the same time T lags far behind n for system (n, T), 

because cooling of the heated up sample is taking a longer time. 

In system (n, T) change in temperature lags behind current and 

the higher T0 is, the larger this lag. Change in systems (nt, T) 

and (n, nt) is strictly related to that of the system (n, T). 

The fact that different charge carrier generation mecha-

nisms can be distinguished from the calculation results of 

Table 1 is noteworthy. The results give a clear picture of 

which of the mechanisms dominate the attempt to restore the 

state of equilibrium, after the system is pushed from it by 

means of some external force, when recombination and gen-

eration rates are out of balance, either in general or in detail. 
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