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Abstract 

The objective of this research is to examine the dissemination of respiratory illnesses, exacerbated by the airborne pollutants 

emitted by the Figuil cement works, among the local population residing in the vicinity. The primary objective is to examine the 

impact of pollution, particularly the emission of fine particles and noxious gases, on the transmission of respiratory diseases such 

as asthma, chronic bronchitis and other lung disorders. The modified SEIR (Susceptible-Exposed-Infected-Recovered) 

epidemiological model is employed for the analysis of transmission dynamics within the community. This model incorporates 

environmental, health and demographic variables, thereby enabling the simulation of disease transmission as a function of 

varying pollution levels. Particular emphasis is placed on vulnerable groups, such as children and the elderly, due to 

immunosenescence, who are more likely to suffer from the adverse effects of pollution. The results will facilitate the formulation 

of efficacious strategies, including the implementation of awareness-raising campaigns and the introduction of sophisticated 

systems for the filtration and capture of pollutants at their source, such as fine particle filters or devices for the reduction of 

nitrogen oxides (NOx), with the objective of limiting the spread of respiratory diseases in at-risk areas and the formulation of 

suitable control measures. 
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1. Introduction 

In Cameroon, there is a paucity of empirical research ex-

amining the impact of cement and marble works on respira-

tory health. However, the available data suggest a correlation 

between exposure to emissions from cement works and an 

increase in respiratory diseases in the surrounding areas. The 

Figuil Cement and Marble Works, situated in the northern 

region of Cameroon, represents a significant source of em-

ployment and economic development for the region. How-

ever, the industrial activities of this cement plant, in particu-

lar the production of cement and marble, result in the genera-
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tion of considerable emissions of atmospheric pollutants, 

notably fine particles (PM2.5 and PM10), sulphur oxides 

(SO₂), and nitrogen oxides (NOx) [1, 2]. These pollutants, 

which are known to have adverse effects on human health, 

are of particular concern to the local population residing in 

the vicinity of the cement plant. 

The issue of air pollution in this region has given rise to 

growing concerns about its impact on public health, particu-

larly in relation to the spread of respiratory diseases. The 

prevalence of respiratory diseases, including asthma, chronic 

bronchitis and lung infections, is exacerbated by continuous 

exposure to elevated levels of air pollutants. Such illnesses 

can disseminate rapidly throughout populations, particularly 

in regions where access to healthcare is constrained. A sub-

stantial body of research has demonstrated a clear correlation 

between exposure to air pollution and an elevated prevalence 

of respiratory illnesses. For example, the World Health Or-

ganisation (WHO) has highlighted that fine particles are 

particularly capable of penetrating deep into the lungs, caus-

ing inflammation and exacerbating conditions such as asth-

ma and chronic obstructive pulmonary disease (COPD) [1, 4, 

6, 8]. In the Figuil locality, studies on air quality are limited, 

but local reports and testimonies from residents indicate an 

increased prevalence of respiratory diseases, particularly in 

children and the elderly, who are more vulnerable to the 

effects of pollution [1]. The SEIR (Susceptible-Exposed 

-Infected-Recovered) epidemiological model is a widely 

used tool for understanding the spread of infectious diseases 

within populations. Extensions of this model have been em-

ployed to examine the dynamics of respiratory diseases in 

settings where pollution exerts a catalytic influence. Recent 

research has incorporated environmental factors, such as air 

quality, into epidemiological models with the objective of 

improving understanding of the influence of air pollutants on 

the spread of respiratory diseases [6, 10]. These models sim-

ulate the impact of fluctuations in pollution on infection and 

recovery rates. A number of studies have demonstrated that 

populations residing in close proximity to industrial areas are 

at an elevated risk of adverse health outcomes due to the 

sustained inhalation of toxic pollutants. Children, in particu-

lar, are more susceptible to developing chronic respiratory 

diseases due to their still-developing immune systems [3, 9]. 

Conversely, the elderly, due to immunosenescence, are more 

likely to develop respiratory infections and encounter serious 

complications. To improve air quality and reduce the inci-

dence of respiratory diseases, targeted interventions are re-

quired. These include the adoption of cleaner industrial 

technologies, the introduction of advanced systems for fil-

tering and capturing pollutants at source to reassure air qual-

ity monitoring, and raising awareness among local popula-

tions of the dangers of pollution. Prevention models incor-

porating epidemiological and environmental data can be used 

to develop more effective public health strategies to limit the 

spread of respiratory diseases in high-risk areas such as 

Figuil. 

2. Patterns of Respiratory Disease 

Transmission Around the Figuil 

Cement and Marble Works 

The prevalence of respiratory diseases in the vicinity of 

the Figuil cement and marble works can be attributed to a 

multitude of factors associated with industrial pollution. The 

activities of the cement and marble works result in the gen-

eration of fine particles and other airborne pollutants, which 

have an adverse impact on the respiratory health of the sur-

rounding population. Modelling the respiratory diseases 

associated with air pollution around the Figuil Cement and 

Marble Works is of paramount importance for the compre-

hension and mitigation of the health impacts of this source of 

pollution. In the conventional approach to modelling, a 

number of age compartments are included in order to reflect 

the differing susceptibility and responses to pollutants exhib-

ited by different age groups. Nevertheless, a streamlined 

methodology can offer a comprehensive overview while 

remaining effective for management and prevention objec-

tives. In order to streamline the analysis while capturing the 

essential dynamics of respiratory disease transmission, we 

propose reducing the initial model [5, 7, 8] to two main 

compartments: children and the elderly. Children are partic-

ularly vulnerable due to their developing immune systems 

and potentially increased exposure to pollutants. Their sus-

ceptibility to developing chronic respiratory diseases justifies 

their separation into a separate compartment. The elderly, 

due to the natural deterioration of the immune system and 

lung function, are also very sensitive to the effects of pollu-

tion. Including them in a separate compartment makes it 

easier to understand and address the specific needs of this 

population. 
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Figure 1. The following compartmental diagram illustrates the transmission model of respiratory disease in the vicinity of the Figuil cement 

and marble works. 

The diagram presents a simplified epidemiological model 

that elucidates the transmission of respiratory disease among 

the local population in the vicinity of the Figuil cement and 

marble works. The model captures the dynamics of respira-

tory disease by considering different transmission scenarios 

within the population, with a particular focus on critical ages. 

The model does not account for vertical transmission and is 

composed of two age classes: individuals aged 0 to 15 (class 

  ) and individuals aged over 36 (class   ). The transition 

between the different compartments is governed by the rates 

described below. 

The terms    and    are used to represent the compart-

ments of susceptible individuals, that is to say, those who are 

healthy but who may potentially become infected. The term 

   refers to the age group between 0 and 15 years old, while 

   refers to individuals aged over 36. The presence of air 

pollution has been demonstrated to increase the susceptibility 

of individuals to disease, as well as the severity of infection. 

This is reflected by its influence on the transmission and 

progression rates (   ) in each    class. The two groups 

may become exposed to the disease via the transmission 

rates      ,              and      , which determine the prob-

ability of a susceptible individual becoming exposed after 

contact with an infectious person. 

The compartments    and    represent those of exposed 

individuals who are not yet infectious. An individual's transi-

tion from the susceptible state to the exposed state is contin-

gent upon their interaction with infectious individuals and 

their transmission rate β. Similarly, the transition from    to 

   and from    to    is also dependent upon the level of 

exposure to the contaminant (polluted air). 

I represents the compartment of individuals who have 

been infected and are capable of transmitting the disease. 

Individuals in compartment    can evolve towards com-

partment I at a rate determined by  , which marks the be-

ginning of the period during which they can infect other 

individuals. 

The letter C represents the compartment of individuals 

who have developed a chronic form of the disease. It is pos-

sible that some individuals, particularly those in the    

compartment, may progress to a chronic state at a rate  . 

These individuals are no longer infectious, but their state of 

health deteriorates over the long term. 

R represents the compartment of individuals who have re-

covered from the disease. Recovery may occur from the 
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infectious compartment (I) at a rate designated as   , or 

from the chronic compartment (C) at a rate designated as   . 

The model parameters are as follows: 

    represents the proportion of the population exposed to 

pollution (contaminated air) from the cement plant recruited 

in each class   . 

The transmission rates of the disease between the different 

age groups,      ,              and      , are represented by 

these variables. 

The natural or disease-related mortality rate of individuals 

in class i is represented by   . 

The rates of progression of exposure to the chronic and 

infectious states are represented by   and  . 

The rates of recovery of infected individuals and individu-

als in the chronic phase to the recovered compartment R are 

represented by    and   . 

The differential equations that govern the movement of 

individuals between the different health states (susceptible, 

exposed, infectious, chronic, recovered) in the epidemiolog-

ical model for the transmission of respiratory diseases around 

the Figuil cement plant are given by equation (1). 

          (1) 

2.1. Positivity of Solutions 

In order to demonstrate that our epidemiological model 

permits positive and bounded solutions, we will analyse the 

differential equations of the system and examine their be-

haviour over time. In particular, we aim to show that the 

populations in each compartment (                 ) re-

main positive and do not exceed certain limits. This implies 

that the populations in each compartment never become 

negative. To verify this, we will analyse each equation. 

Compartiment          : 

The equation of    is: 

   ̇ =    −  S1
  − (     +      )   

It is assumed that the initial condition,   (0), is positive, 

that is to say,   (0)  . This implies that the population in 

compartment    is positive at the outset. 

The term     represents a positive constant, denoting the 

inflow into compartment   . The terms  S1
   and 

(     +      )  are negative terms that serve to reduce the 

population of   . 

In the event that    reaches zero, the equation    ̇ =

      indicates that    cannot remain at zero and will 

begin to increase due to the positive inflow    . It can 

therefore be concluded that       will remain positive. 

If    is positive, the differential equation 

  ̇ =    −  S1
  − (     +      )   is a form of the 

Riccati-type relation, which often admits bounded solutions 

under certain conditions. It is necessary to ensure that       

remains positive; this can be achieved by verifying that the 

loss rate ( S1
+      +      )   is never greater than the 

input    . In other words, the objective is to demonstrate 

that     is greater than or equal to ( S1
+      +

     )     . This is true as long as       is sufficiently small, 

that is to say,       
 1 

(  1  1 1   1   )
. 

Therefore, when       is positive but small,       re-

mains positive as long as the terms ( S1
+      +      ) do 

not exceed    . It can be similarly reasoned that       also 

remains positive. 

Compartment    (or   ): 

For the sake of argument, we may assume that    can 

become negative, that is to say,    < 0. Substituting this into 

the equation   
̇ = (     +      )  − (   

+   )  , we ob-

tain: Substituting      into the equation yields: The tem-

poral derivative of    is given by the following equation: 

  
̇ = (     +      )  − (   

+   )   The variable    is 

therefore defined as: 

Given that    is less than zero and that    
+   are posi-

tive (representing the death rate and progression rate), the 

term    
+   Thus,    is positive. It can be seen that the 

right-hand side of the equation is: The equation can be rear-

ranged as follows: 

(     +      )  − (   
+   )   It can be demonstrated 

that    will be greater than: (     +      )  , given that the 

value of −(   
+   )   is less than zero. The value of    is 

positive. Consequently, the term −(   
+   )   will exert a 

positive influence on   
̇ . If    were initially negative, the 

temporal derivative (  ) would be positive, indicating an 

increase in    towards positive values. This is inconsistent 

with the assumption that    could remain negative. There-

fore, it can be concluded that    must be positive or zero. It 

can therefore be concluded that, by applying a similar line of 

reasoning to that used for   ,    must remain positive or 

zero. 

Compartment I (or C): 

For the sake of argument, let us assume that I can become 

negative, that is to say, I<0. This leads to the equation 

 ̇ =    −    +     . 

Given that I is less than zero and the term    +      is 

positive, it follows that the latter will add a positive term to 

  . Therefore, we can conclude that  ̇ will be positive. If the 

derivative of I with respect to time,   is positive while I is 

less than zero, it follows that I will increase towards positive 

values. This is in contradiction with the initial assumption 

that I can remain negative. It follows that I must be positive 
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or zero. The same line of reasoning can be applied to C, 

which also guarantees the positivity of the solutions. 

Compartment R: 

It is assumed that R can become negative, that is to say, 

   . Given that  ̇ =    +    −    , the term 

   +     is positive. If R is negative, then the term −    

is positive, given that −    is positive and R is negative. 

Therefore, when R is less than zero, the term −    will be 

positive and increase the rate of change of R (i.e.  ̇). If R 

were negative, then  ̇ would be positive. This implies that 

R will increase towards positive values due to the term 

−    being positive. Consequently, R cannot remain nega-

tive; it must be positive or zero. 

2.2. The Originality of the Solutions 

The objective of this demonstration is to prove that the 

solutions are bounded. This is to be achieved by establishing 

the existence of positive constants  S1
,  S 

,    
,    

, 

   ,   ,    such that: It is also required that       

 S1
        S 

          
          

      

                    

The total sum N(t) of individuals in all compartments at a 

given time t is given by the following equation: 

N   =      +      +      +      +     +     +      

The total derivative can now be calculated. 

dN t 

dt
=    ̇   +    ̇   +   ̇   +   ̇   +  ̇   +  ̇   +  ̇     

⇔
dN t 

dt
= [   −  S1

  − (     +      )  +    −

 S 
  − (     +      )  + (     +      )  −

(   
+   )  +       +         − (   

+   )  +    −

   +      +     −    +       +    +    −    ]  

In essence, the positive and negative terms associated with 

the transmission of the infection are in equilibrium, resulting 

in the following equation: 

⇔
dN t 

dt
=    +    − ( S1

  +  S 
  +    

  +    
   +

    +    +    )  

Adjustment for natural variation in mortality: 
dN t 

dt
=     +    −  N    in this equation, μ represents 

a weighted average of natural mortality rates. The general 

solution to this linear differential equation is as follows: 

N   =  
   1    

 
+ (N   −

   1    

 
) e− t  

This shows that N(t) is bounded by 
   1    

 
. 

It can be demonstrated that a positive constant,  N, exists 

such that N(t) is bounded by  N for all t ≥0. This is due to the 

fact that N(t) is the sum of the compartments 

                 , and therefore the result follows from the 

boundedness of these individual compartments. Given that 

                     and N(t) are bounded, it follows that 

each compartment                                        is 

also bounded. It follows that there exist positive constants 

 S1
,  S 

,    
,    

,   ,   ,    such that: This implies 

that the total population size cannot grow indefinitely and is 

therefore bounded. 

The inequalities are as follows: 

       S1
        S 

          
          

      

                     

2.3. The Existence and Uniqueness of Solutions 

The given system of differential equations can be ex-

pressed as a Cauchy problem. 

Ẋ   = F X     with X   =

(

 
 
 
 
 

     

     

     

     

    

    

    )

 
 
 
 
 

 and 

F X    =

(

 
 
 
 
 
 

   −  S1
  − (     +      )   

   −  S 
  − (     +      )  

(     +      )  − (   
+   )  

      +         − (   
+   )  

   −    +      

    −    +       
   +    −    )

 
 
 
 
 
 

  

The Cauchy problem is then formulated as follows: The 

initial value X(0) is equal to X , where X  represents the 

given initial conditions. The function F(X(t)) is infinitely 

differentiable on   
 , and thus locally Lipschitzian there. 

The Cauchy-Lipschitz theorem allows us to conclude that 

there exists a unique maximum solution to the Cauchy prob-

lem associated with the differential equation (1) for the ini-

tial condition (  , X ) ∈   
   Furthermore, since F(X(t)) is 

of class   , this solution is also of class   . 

2.4. Basic Reproduction Number (𝐑𝟎) 

The calculation of the infection-free equilibrium point 

(DFE) is as follows: the DFE is reached when   =   =

 =  =  . Assuming that the populations of susceptible    

are at equilibrium, we can write:: {
 =    −  S1

  

 =    −  S 
  

 

The solutions are as follows:    
    

              =
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(
 1 

  1

 
   

   

          ) 

The basic reproduction number (  ) is calculated using 

the spectrum of the Jacobian matrix evaluated at the DFE. 

This matrix is formed by linearising the system around the 

DFE. The new infection rate matrix (F) and the transition 

rate matrix between infected compartments (V) are given by: 

F =

[
 
 
 
(     +      )  

 

(     +      )  
 

 
 ]

 
 
 

 and V =

[
 
 
 
 

(   
+   )  

(   
+   )  

−   +    +      

−    +    +      ]
 
 
 
 

  

The Jacobians of F and V are evaluated in the absence of 

infection, whereby   =   =  =  =  . 

 

The basic reproduction number, denoted by   , is given 

by two distinct formulas:   =   −FV−   with     . In 

the first formula, ρ is the spectral radius of the matrix 

−FV− , which is defined as the dominant eigenvalue. This 

formula is applicable when   (A) represents the spectrum of 

A. In the second formula, A is the matrix whose eigenvalues 

are the solutions of the characteristic equation:  

det −FV− −    =  . 

 

The matrix FV−  is given by the equation 

 

The expression for    can be approximated by the following approximation: 

  ≈ max {
 1 1S1

 

 E 
 γ

+
 1  S1

 γ

  E 
 γ     γ1 

 
   1S 

 

 E 
 δ

+
    S 

 δ

  E 
 δ     γ  

}  

2.5. The Overall Stability of the Disease-Free 

Equilibrium Point (DFE) Is of Significant 

Interest in This Context 

Theorem 1: In the case of system (1), if      , then the 

DFE is globally asymptotically stable along the positive 

orthant   
 . Conversely, if     , the DFE is unstable. 

Proof: In order to study the stability of the DFE, it is nec-

essary to analyse the eigenvalues of the Jacobian matrix of the 

system evaluated at the DFE [8]. If all the eigenvalues have a 

negative real part, the DFE is locally asymptotically stable. It 

will be demonstrated that the initial situation arises when 

    . The Jacobian matrix of the system (1) evaluated at 

the disease-free equilibrium is given by J(0) = F + V. Given 

that F is non-negative and V is a stable Metzler matrix, it 

follows that F + V is a regular decomposition of J(0). There-

fore, by virtue of [5], we can conclude that   −FV−   is 

equivalent to where α(M) denotes the stability modulus of the 

matrix M, which is defined as the largest real part of the 

elements of its spectrum. It follows that the disease-free 

equilibrium is locally asymptotically stable. This, in turn, 

implies, in accordance with Hirsch's theorem, that the dis-

ease-free equilibrium (in this case, the origin) is globally 

asymptotically stable if   =   −FV−      . 

2.6. The Existence of an Endemic Equilibrium 

Proposition: In the case of system (1), a unique endemic 

equilibrium point    
    

    
    

            is obtained by 
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solving system (1) with, for example, the substitution method 

in the positive orthant, provided that        

Theorem 2: (The overall stability of the endemic balance 

is of paramount importance.) In the event that    is greater 

than 1, the single endemic equilibrium point 

   
    

    
    

            of system (1) is globally asymptot-

ically stable. 

Proof: In order to examine the system's overall stability, 

we will simplify the model equation by grouping the infec-

tious latents    and chronic latents    into a single class 

labelled   , and the infectious (I) and chronic patients (C) 

into a second class labelled   . The resulting simplified 

model is as follows: 

                     (2) 

The distinctive endemic equilibrium point    
    

    
    

      is defined by the following relationships: 

                      (3) 

The following Lyapunov candidate function is worthy of consideration: 

 

The derivative of the Lyapunov candidate function V along trajectories of the ordinary differential system (2) is given by the 

following expression: 

V̇  =  (   −  S1
  − (      +       )  −    

S1
 

S1
+  S1

  
 +   

 (      +       )) + (   −  S 
  − (      +       )   −

   
S 
 

S 
+  S 

  
 +   

 (      +       )) + ((      +       )  + (      +       )  − (   
+  +    

+   )  −   
 (    +

    
  

 1
)   +   

 (    +     
  

 1
)   − (   

+  +    
+   )  

 ) +
 1  S1

      S 
 

   γ1    γ 
(  +     −    +   +   +       −   

    +

  
 1

  
−    +   +   +      

  )  

By employing the system relations at the endemic equilibrium point of the system (3), we arrive at the following conclusion: 

V̇  =  ( S1
  
 + (      

 +       
 )  

 −  S1
  

S1
 

S1
− ( S1

  
 + (      

 +       
 ))

S1
 

S1
+  S1

  
 +   

 (      +       )) +

( S 
  
 + (      

 +       
 )  

  −   S 
  

S 
 

S 
 − ( S 

  
 + (      

 +       
 )  

 )
S 
 

S 
+  S 

  
 +   

 (      +       )) − (   
+  +

   
+   )  −       

   
S1
 

S1
−       

   
S1
 

S1

 1
 

 1

  

  
+       

   
S 
 

S 
−       

   
S 
 

S 

 1
 

 1

  

  
+       

   
 
 
+       

   
 +       

   
 +

 1  S1
      S 

 

   γ1    γ 
(  +     −    +   +   +       −   

    +   
 1

  
−   +      

 )  

=  S1
  
 (2 −

S1
 

S1
−

S1

S1
) +  S 

  
 (2 −

S 
 

S 
 −

S 

S 
 ) +       

   
 (2 −

S1
 

S1
−

S1

S1
) +       

   
 (2 −

S1
 

S1
−

S1
 

S1

 1
 

 1

  

  
) +       

   
 (2 −

S 
 

S 
 −

V =   S1 − S1
  lnS1 +  S2 − S2

  lnS2 +  I1 − I1
  lnI1 +

 1,2S1
 + 

2,2
S2
 

µI+ 1+µC+ 2

 I2 − I2
  lnI2     
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S 

S 
 ) +       

   
 (2 −

S 
 

S 
 −

S 

S 

 1
 

 1

  

  
) + (      

 +       
 +

 1  S1
      S 

 

   γ1    γ 
  +   − (   

+  +    
+   ))   + (      

 +       
 −

 1  S1
      S 

 

   γ1    γ 
   +   +   +    )   −

 1  S1
      S 

 

   γ1    γ 
  +     

  1

 1

  
 

  
+ +

 1  S1
      S 

 

   γ1    γ 
  +     

   

By posing  =
 1  S1

      S 
 

   γ1    γ 
, 

it just       
 +       

 =     +   +   +     

⇔       
 +       

 −     +   +   +    =   and       
 +       

 +    +   − (   
+  +    

+   )  

=
( 1 1S1

     1S 
  

β1   1
 +β     

 

µ +γ1+µ +γ 
 δ γ )( E 

 γ  E 
 δ ) 

( E 
 γ  E 

 δ ) 
− (   

+  +    
+   )  

= (   
+  +    

+   ) (
(( 1 1S1

     1S 
 )    γ1    γ   ( 1  S1

      S 
 ) δ γ ) 

( E 
 γ  E 

 δ )     γ1    γ  
−  ) =    

In order to establish the relationships set out in (3), 

 = (      
 +       

 )  
 + (      

 +       
 )  

 − (   
+  +    

+   )  
   

we have: (      
 +       

 )  
 + (      

 +       
 )  

 = (   
+  +    

+   )  
  

⇔       
   

 +     
 δ γ 

    γ1    γ  
  
   

 +       
   

 +     
 δ γ 

    γ1    γ  
  
   

 = (   
+  +    

+   )  
   

⇔ 
   +   +   +     (      

 +       
 ) +   +   (      

 +       
 )

   +   +   +    (   
+  +    

+   )
=   

   +     
 =

 1  S1
      S 

 

   γ1    γ 
  +     

   

=
 δ γ 

   γ1    γ 
  
 (      

 +       
 )  

=       
   

 +       
   

  

By employing these relationships in the expression of V , we arrive at the following equation  

V̇ =  S1
  
 (2 −

S1
 

S1
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V is a strict Lyapunov function, and according to Lya-

punov's theorem, the endemic equilibrium point 

   
    

    
    

      is globally asymptotically stable. 

3. Numeric Simulation 

The digital simulation of the Respiratory Disease Trans-

mission Model around the Figuil Cement Works is designed 

to investigate the dynamics of respiratory disease transmis-

sion influenced by the plant's pollutant emissions. A system 

of differential equations is employed to model the transitions 

between different categories of the population, including 

susceptible, exposed, infectious, chronic and recovered indi-

viduals. The objective is to assess the impact of pollution on 

the health of local residents and to determine the epidemic 

potential as a function of the baseline reproduction rate   . 

This analysis will facilitate an understanding of the health 

impact of the cement plant and the development of appropri-

ate control measures. 
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Table 1. Estimated parameter values for the model (1) using data 

for the Regional Delegation of the Environment in the North Region 

of Cameroon. 

Value 

(𝐑𝟎>1) 

Value 

(𝐑𝟎<1) 
Parameters 

Value 

(𝐑𝟎>1) 

Value 

(𝐑𝟎<1) 
Parameters 

0.025 0.02       1 1    

0.045 0.061       0.5 0.5     

0.076 0.05       0.5 0.5     

0.085 0.061       0.01 0.01  S1
  

0.1 0.05     0.01 0.01  S 
  

0.1 0.05     0.025 0.015    
  

0.15 0.1 Δ  0.043 0.085    
  

0.1 0.1 Γ  0.017 0.013     

1.0066 0.6783     0.013 0.012     

   0.1 0.1     

3.1. Simulate if 𝐑𝟎<1 

 
Figure 2. The system's behaviour in response to 𝑅 =0.6783. 

The system's behaviour can be described as follows: When 

   is less than one, the model demonstrates a gradual decline 

in the population of infectious individuals (i.e.,   (t), I(t), 

C(t)). Individuals infected or in the latent phase of infection 

tend to disappear over time. 

Stabilisation: The system tends to stabilise with a reduction 

in the number of cases of infection to very low or zero levels. 

The susceptible compartments   (t) and   (t) remain rela-

tively high, as the infection is not spreading significantly in 

the population. 

3.2. Simulate if 𝐑𝟎>1 

The system's behaviour can be described as follows: In the 

event that    is greater than unity, the population of infec-

tious individuals will increase at the outset of the simulation. 

The growth of   (t), I(t), and C(t) indicates the active spread 

of infection. 

The spread of infection is as follows: As a consequence of 

the elevated value of   , a greater proportion of susceptible 

populations, namely   (t) and   (t), become infected over 

time. This results in a reduction in the aforementioned sus-

ceptible compartments and an increase in the infectious 

compartments. 

Epidemiological interpretation: When    is greater than 

one, the infection has the potential to spread significantly, 

resulting in an epidemic. The epidemic persists, and the 

number of infectious cases remains high. 

Implications for the Control of Epidemics: In the context 

of public health, it is imperative to control    values below 

1 in order to prevent the development of an epidemic. Such 

measures may include vaccination, social distancing, or other 

control strategies designed to reduce transmission. 

System Stability: The simulation also demonstrates that 

the initial conditions and model parameters influence the 

stability of the system. When    < 1, the system reaches a 

steady state with minimal infection. Conversely, when    > 

1, the system can enter into continuous epidemic dynamics if 

no measures are taken to reduce   . 

 
Figure 3. The system's behaviour in response to 𝑅 =1.0066. 

4. Conclusions 

This research demonstrates the considerable impact of at-

mospheric pollution, particularly the emissions of fine parti-

cles and harmful gases from the Figuil Cement, on the prev-

alence of respiratory diseases among local populations. The 
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analysis, conducted using a modified SEIR epidemiological 

model, revealed that elevated pollution levels can exacerbate 

the transmission of diseases such as asthma and chronic 

bronchitis, particularly among vulnerable demographic 

groups, including children and the elderly. The simulation 

results demonstrate the impact of   . When    is less than 

one, the model predicts a reduction in infection cases and a 

stabilisation of the system with minimal infection. Con-

versely, if    is greater than 1, the epidemic can develop 

continuously, thereby underscoring the necessity for inter-

ventions aimed at reducing   . The results of the simula-

tions demonstrate that the stability of the system is contin-

gent upon the initial conditions and model parameters. Mod-

ifications to transmission rates, recovery rates, and environ-

mental conditions have the potential to impact epidemic 

dynamics. A balance is reached when    is controlled be-

low 1, thereby facilitating the limitation of the impact of 

pollution on the spread of diseases. In order to mitigate the 

harmful effects of pollution on respiratory health, it is rec-

ommended that control strategies be implemented, including: 

This study emphasises the necessity of an integrated strategy 

for the control of respiratory diseases exacerbated by pollu-

tion, which should combine environmental control measures 

with adapted public health interventions. The simulation of 

epidemiological models, taking into account the effects of 

pollution, offers valuable insights for the development of 

effective and adapted strategies for the reduction of health 

risks in affected areas. 
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NOx Nitrogen Oxides 

NO2 Nitrogen Dioxide 

SO₂ Sulfur Dioxide 
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Micrometers 

SEIR Susceptible -Exposed-Infected-Recovered 

COPD Chronic Obstructive Pulmonary Disease 

WHO World Health Organisation 

DFE Disease Free Equilibrium 
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